Hình thang cân là gì? Đây là một tứ giác đặc biệt mà học sinh cấp trung học cơ sở sẽ được tiếp cận. Để hiểu rõ hơn về định nghĩa, tính chất, dấu hiệu nhận biết và ứng dụng của hình thang cân thì bạn hãy theo dõi bài viết dưới đây.
Hình thang cân là gì?
Hình thang cân là một tứ giác có 2 đáy song song, đồng thời có hai góc kề một đáy bằng nhau. Ví dụ như hình thang CDEF có đáy lớn, đáy nhỏ lần lượt là CD và EF, suy ra EF // CD và góc E = F.
Tính chất hình thang cân
Dưới đây là một số tính chất đặc biệt của hình thang cân mà các bạn học sinh cần ghi nhớ để làm bài tập tốt hơn:
- Hình thang cân có 2 cạnh bên bằng nhau. Ví dụ ABCD là một hình thang cân với 2 đáy lần lượt là AB và CD => AD = BC.
- Hình thang cân có 2 đường chéo bằng nhau. Ví dụ ABCD là một hình thang cân với 2 đáy lần lượt là AB và CD => AC = BD.
- Hình thang cân có 2 góc kề đáy kề nhau. Ví dụ ABCD là một hình thang cân với 2 đáy lần lượt là AB và CD => góc A = góc B và góc C = góc D.
- Hình thang cân có thể nội tiếp một đường tròn, nghĩa là 4 điểm của hình thang đều thuộc 1 hình tròn. Ví dụ hình thang cân ABCD nội tiếp đường tròn tâm O => 4 điểm A, B, C, D cùng thuộc hình tròn tâm O.
Dấu hiệu nhận biết hình thang cân
Hình thang cân là một tứ giác đặc biệt nên có dấu hiệu nhận biết rất rõ ràng. Vậy cách chứng hình thang cân là gì? Bạn có thể dựa vào các dấu hiệu nhận biết hình thang cân dưới đây để nhận hình học này:
- Hình thang có 2 góc kề một đáy bằng nhau là hình thang cân.
- Hình thang có 2 cạnh bên bằng nhau thì có khả năng cao là hình thang cân. Tuy nhiên, nếu sử dụng dấu hiệu này để chứng minh hình thang cân, bạn nên kiểm tra lại 2 đường chéo hay 2 góc kề đáy có bằng nhau không. Nguyên nhân là bởi trên thực tế vẫn có tứ giác có 2 cạnh bên song song và bằng nhau nhưng không phải hình thang mà là hình bình hành.
- Hình thang nội tiếp một đường tròn là một hình thang cân.
Công thức tính diện tích và chu vi hình thang cân
Công thức tính diện tích hình thang cân: $$S\;=\;(a\;+\;b)\;\times\;h/2$$
Trong đó:
- S: Diện tích hình thang cân
- a và b: Chiều dài của hai cạnh đáy
- h: Chiều cao từ đáy lớn đến đáy bé
Công thức tính chu vi hình thang cân: $$P\;=\;a\;+\;b\;+\;2c$$
Trong đó:
- P: Chu vi hình thang cân
- a và b: Chiều dài của hai cạnh đáy
- c: Chiều dài của cạnh bên
Một số dạng bài tập về hình thang cân thường gặp
Để nắm rõ hơn các kiến thức gồm định nghĩa, tính chất và dấu hiệu nhận biết htc là gì, các bạn học sinh cần luyện nhiều bài tập. Dưới đây là một số dạng bài tập về hình học này thường gặp nhất:
Dạng 1: Tính chu vi hình thang khi biết độ dài các đáy và cạnh bên
Với dạng bài này, mọi yếu tố cần biết để tính chu vi hình thang đã được cho sẵn. Do đó, các bạn học sinh chỉ cần xác định đúng đâu là độ dài của cạnh đáy, cạnh bên và lắp vào công thức là ra. Dưới đây là bài tập ví dụ về dạng bài này:
Bài tập: Cho hình thang ABCD có độ dài hai đáy AB, CD lần lượt là 8cm và 10cm. Cạnh bên AD = BC = 7cm. Tính chu vi của hình thang này.
Lời giải
Theo công thức tính chu vi hình thang cân, ta có chu vi ABCD là: $$P\;=\;8\;+\;10\;+\;(2\;\times\;7)\;=\;32cm$$
Vậy chu vi hình thang cân ABCD là 32cm.
Dạng 2: Tính độ dài cạnh bên của hình thang cân
Với dạng bài này, học sinh cần linh hoạt trong việc sử dụng các công thức, tùy thuộc vào dữ liệu đề bài cho. Dưới đây là các dạng bài tập mà bạn có thể tham khảo:
Bài tập 1: Cho hình thang cân ABCD (AB // CD, AB < CD) với độ dài 2 đáy lần lượt là 4 và 6cm. Chu vi của hình thang là 16cm. Tính cạnh bên AD của hình thang đó.
Lời giải:
Độ dài của cạnh bên AD là: $$AD\;=\;16\;-\;(4+6)/2\;=\;3cm$$
Vậy AD có độ dài bằng 3cm.
Bài tập 2: Cho hình thang cân ABDC (AB // CD, AB < CD), biết độ dài 2 đáy lần lượt là 10 và 16cm. Đường cao AH và BF bằng 18cm. Tính độ dài 2 cạnh bên AC và BD.
Lời giải:
Vì ABCD là hình thang => AC = BD và góc D = góc C
=> tam giác AHC = tam giác BFD (cạnh huyền – góc nhọn)
=> CH = FD
Xét tứ giác ABFH có AH = BF, AH // BF và AH HF
=> ABFH là hình chữ nhật => AB = HF
Ta có HC + HF + FD = 16cm
=> HC = FD = 3cm
Có AC = CH2 + AH2 = 37 cm (định lý pitago)
Vậy AC = BD = 37 cm
Dạng 3: Tính diện tích hình thang cân
Dưới đây là bài tập ví dụ tính diện tích hình thang cân mà bạn có thể tham khảo:
Đề bài: Cho hình thang cân ABCD có độ dài hai đáy AB, CD lần lượt là 8cm và 10cm, đường cao AH bằng 12cm. Tính diện tích hình thang đó.
Lời giải:
Diện tích hình thang cân ABCD là: $$S\;=\;(8\;+\;10)\;\times\;122\;=\;108\;cm^2$$
Vậy diện tích hình thang cân ABCD bằng 108cm2
Ứng dụng của hình thang cân trong thực tế
Ngoài việc hiểu hình thang cân là gì trong toán học, các em học sinh cũng cần phải biết ứng dụng của hình học này trong thực tế. Các tính chất, công thức tính hình thang cân được sử dụng trong nhiều lĩnh vực khác nhau. Cụ thể như sau:
- Thiết kế: Các tính chất, công thức tính chu vi thường được áp dụng để tính toán kích thước khi thiết kế các đồ vật có dạng hình thang cân như túi xách, kệ sách,…
- Công nghiệp: Có nhiều linh kiện của máy móc được sản xuất theo dạng hình thang cân để đảm bảo hoạt động.
- Xây dựng: Công tính chu vi, diện tích thường được sử dụng để tính số lượng vật liệu cần dùng khi xây dựng các công trình có dạng hình thang cân như mái nhà, sàn nhà,…
Hy vọng qua những thông tin trên, các bạn học sinh đã nắm rõ định nghĩa, tính chất, dấu hiệu nhận biết và ứng dụng của hình thang cân là gì. Để biết thêm nhiều công thức tính của các hình học khác, hãy theo dõi những bài viết khác của Học Thế Nào nhé.